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The spectral properties of itinerant two-dimensional systems with �nearly� ferromagnetic ground state are
studied within the spin-fermion and classical s-d exchange models. While the former model describes the effect
of collective magnetic excitations on the electronic properties, the latter one considers the effect of local
moments. We use the equation of motion approach combined with the 1 /M and 1 /z expansions �M is the
number of spin components and z is the coordination number� to investigate spectral functions. In both models,
the spectrum splitting occurs at low temperatures T in the renormalized classical regime due to strong magnetic
fluctuations. For the interaction J between electronic and magnetic degrees of freedom comparable to the
bandwidth �the intermediate-coupling regime�, the 1 /z expansion predicts full splitting of electronic spectrum
or opening the magnetically induced gap below some temperature Ts. At the same time, the spectrum remains
only partly split in the 1 /M expansion with the quasiparticle structure, which becomes fully coherent at low T.
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I. INTRODUCTION

The narrow-band d systems pose the problem of magne-
tism of electronic systems, where the electron-electron inter-
actions are comparable to the bandwidth. Two different
points of view on magnetic excitations in such systems can
be considered. On one hand, magnetic excitations can be
treated as collective excitations of itinerant electrons.1 On the
other hand, in many d- and especially f-electron systems,
one can consider localized �magnetic� and itinerant excita-
tions as two independent degrees of freedom interacting with
each other.

The latter viewpoint is convenient, e.g., for transition met-
als containing both conducting and localized electrons. For
the description of such systems, the s-d exchange model was
introduced about 50 years ago by Vonsovskii.2 The corre-
sponding one-impurity model was applied later for the ex-
planation of the Kondo effect;3 the periodic version of this
model �the Kondo lattice model� was used for the description
of the anomalous properties of strongly correlated f-electron
systems, e.g., heavy-fermion compounds.4 The strong-coup-
ling �“double-exchange”� limit of the s-d model was applied
for treating the interaction between localized moments and
current carriers in a narrow d band in ferromagnetic semi-
conductors5 �e.g., chalcogenide spinels� and manganates.6,7

The strong interaction between the itinerant and localized
degrees of freedom in the above-mentioned class of systems
can lead to incoherent structures in the spectral functions, in
particular, the gap in electronic spectrum can arise due to
local correlations. Such a situation occurs, e.g., in the s-d
exchange model, which shows a metal-insulator transition
with increasing the interaction of localized spins with con-
duction electrons in a half-filled band due to the alignment of
spins of conduction electrons along the local spins, reducing
the number of doubly occupied sites.8,9 This transition is
similar to the metal-insulator transition studied for the half-
filled Hubbard model10 and was investigated within the ex-
tended dynamical mean-field theory.11 In more than three

dimensions, the local d→� picture10,11 is expected to give a
qualitatively correct description of the physics near the
metal-insulator transition, while the situation in three dimen-
sions may be more involved. In particular, it was proposed
that the appreciable short-range magnetic order in
d=3 may lead to the magnetic spin splitting above the Curie
temperature TC.12,13 Such a splitting, which cannot be de-
scribed within the local theory, was presumably observed in
strong itinerant magnets Fe and Ni.14

At the same time, in the peculiar d=2 �or quasi-two-
dimensional� case which is physically relevant for the lay-
ered magnetic systems with small interlayer hopping �lay-
ered manganites, cuprates, and other compounds with the
perovskite structure�, the strong short-range magnetic order
takes place. It is especially pronounced in the so-called
renormalized classical temperature regime, which arises
above the magnetically ordered ground state and is charac-
terized by an exponentially large correlation length
��exp�A /T� �A is some constant�.15 Strong magnetic corre-
lations in this regime result in the structure of the electronic
spectrum, which is similar to that in the ordered phase.16–18

As a result, a quasisplitting of the Fermi surfaces or a
pseudogap can occur at low enough temperatures due to
ferromagnetic19 �FM� or antiferromagnetic �AFM�/charge
density wave �CDW� fluctuations.20 These features of spec-
tral functions have a clearly different nature as compared to
the above discussed Mott gap, since the finite �d=2� dimen-
sion is crucial for their appearance; they are also expected to
be relevant for quasi-two-dimensional �quasi-2D� systems
with small interlayer hopping above the magnetic transition
temperature.

Recently, the pseudogap structures have been observed in
layered manganite compound La1.2Sr1.8Mn2O7.21 These
structures are present both above and below TC, and possibly
originate from the CDW fluctuations.7 The FM fluctuations,
however, may be responsible for the part of the pronounced
shift ��250 meV� of the spectral weight maxima off the
Fermi level above the Curie temperature.
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The separation of conduction and localized magnetic de-
grees of freedom can be also “dynamic” and arise in purely
itinerant electronic systems due to strong short-range mag-
netic order. In particular, it was pointed out that even purely
itinerant electronic systems in the regime of strong magnetic
correlations can be described by an effective classical s-d
model.18

To treat the effect of collective magnetic degrees of free-
dom on the electronic properties and describe properties of
2D systems near magnetic quantum phase transitions, an-
other model, spin-fermion model, was introduced.22–24 Al-
though this model was originally proposed as a phenomeno-
logical model for systems with strong AFM fluctuations, the
systems with strong FM fluctuations can be treated within
this model as well.25,26

The comparison of the spectral properties of systems
where magnetic fluctuations are induced by local moments
�described within the s-d model� or collective magnetic fluc-
tuations �described within the spin-fermion model� in the
regime of strong magnetic fluctuations is of certain interest.
The spectral properties of the 2D systems with strong mag-
netic fluctuations were investigated previously within the
spin-fermion model in the Eliashberg approximation,24,25

which neglects vertex corrections, and in the quasistatic ap-
proach, performing summation of all the types of diagrams,
but neglecting the effect of dynamic spin fluctuations.23,26

The latter approach yields the two-peak structure of the spec-
tral function for both strong FM and AFM correlations, with
a finite spectral weight at the Fermi level at finite �.

Contrary to the spin-fermion model, where the length of
the spin vector describing magnetic degrees of freedom at
each lattice site is not fixed, the s-d model considers fixed
spin length. The result for the spectral weight A�kF ,����2

in the zero-bandwidth limit of the spin-fermion model23,26

shows that the spectral weight vanishes at �=0 only, and a
true metal-insulator transition is not expected to occur. Such
a transition is, however, expected to be described by the s-d
model.9,27,28 Treating of electronic properties near this tran-
sition is reminiscent of the problem of considering the effect
of magnetic fluctuations in a strongly correlated Hubbard
model. Although a number of approaches were proposed re-
cently which extend the d→� dynamical mean-field
theory10 �DMFT� to account for the short-range29 and
long-range30–33 correlations, the development of analytical
approaches to this problem is also of certain interest.

To study the magnetic fluctuations in the regime of the
intermediate and strong interactions between localized and
itinerant subsystems, the 1 /z expansion, where z is the coor-
dination number, can be used. This approach has been ap-
plied before to the ferro- and paramagnetic s-d models �see
Refs. 8, 9, 27, and 28� as well as to the paramagnetic state in
the Hubbard model.9,34 Its extension to describe the para-
magnetic state with strong magnetic correlations is of certain
interest.

Another promising candidate for nonperturbative descrip-
tion of strongly correlated electronic systems is the Ward-
identity approach.35 Although this approach was quite suc-
cessful in describing the strongly FM ordered state,36 its
generalization to the weak FM and paramagnetic situations
meets difficulties, since the contribution of longitudinal spin

fluctuations, which should be taken into account in these
cases, makes the system of equations for the electronic self-
energy and electron-�para�magnon vertices not closed.

This difficulty was overcome in a recently proposed com-
bination of the Ward-identity approach with the 1 /M
expansion19 �M is the number of spin components; M =3 for
the s-d and Hubbard models�. The use of the 1 /M expansion
gives a possibility to truncate the hierarchy of integral equa-
tions for the self-energy and electron-magnon vertices. To
apply this method to a broader class of models, we consider
in the present paper its generalization—the equation of mo-
tion approach combined with the 1 /M expansion. Contrary
to the 1 /z expansion, which considers equations of motion
for Hubbard operators, this method is applied to fermionic
operators, which allows us to describe both weak- and
strong-coupling regimes, as well as the crossover between
them.

The plan of the paper is the following. In Sec. II, we
present the theoretical models describing the interaction of
electronic and magnetic degrees of freedom in strongly cor-
related systems. In Sec. III, we formulate the 1 /z expansion
for the s-d model. In Sec. IV, we use the equation of motion
method to derive the self-consistent equations for the self-
energy and electron-magnon vertices within the 1 /M expan-
sion, the details of the derivation being presented in the Ap-
pendix. In Sec. V, we investigate the electronic self-energy,
spectral functions, and electron-magnon vertices in different
regimes. Finally, in Sec. VI, we summarize the main results
of the paper.

II. MODEL

We consider a correlated electronic system with itinerant
and localized-moment subsystems, which is described by the
generating functional

Z��� =� D�c,c†�D�S�exp�− S�c,S�/T − �ck�
† �k� + �k�

† ck��� ,

�1�

where the fields c and S correspond to the electronic and spin
degrees of freedom, respectively. The action S�c ,S� has the
form

S�c,S� = iT�
0

1/T

d�	
i

A�Si�
�Si

��
+ 	

k

�i�n − 	k�ck�
† ck�

+ 	
q

RqSqS−q + J 	
kk����

Sk−k�����ck�
† ck���, �2�

where the first three terms describe the electronic and spin
subsystems, the last term proportional to J corresponds
to the interaction between them, q= �q , i
n�, k= �k , i�n�,

n=2n�T and �n= �2n+1��T are bosonic and fermionic
Matsubara frequencies, 	k is the electronic spectrum, ����
are the Pauli matrices, and the term proportional to Rq de-
scribes an indirect spin-spin exchange. Below, we suppose
that this exchange is ferromagnetic, i.e., Rq,0 has its mini-
mum at q=0.

Two different versions of the model �2� are considered in
the paper. The first version, which is referred to as “s-d type
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models,” has the measure of integration over the field S

D�S� = Dsd�S� 
 �
i

��Si
2 − S2�d3Si, �3�

so that the length of the field S is fixed to S. This is, in
particular, the case for the lattice analog of the standard s-d
exchange model2 �i.e., Kondo-lattice model�. In this case, the
vector potential A�S� describes the precession of free spin
and satisfies the equation �S
A�S� ·S=1, �S= �� /�Sx ,
� /�Sy ,� /�Sz�. In the classical limit S→�, this term fixes the
field S to be static, �S /��=0 �cf. Ref. 37�. For the s-d type of
models, the term proportional to Rq in Eq. �2� can be con-
sidered as arising, e.g., from the indirect spin-spin Ruder-
man-Kittel-Kasuya-Yosida exchange.

The model �2� with D�S�=Dsd�S� and A�S�=0 �which is
referred to as an effective s-d model in the following� can be
naturally obtained from the Hubbard model in the renormal-
ized classical regime.18 The quantity Rq is determined in this
mapping by the random-phase approximation expression for
the inverse susceptibility in the ordered phase.18

Another version of the model �2� we consider is the spin-
fermion model22–24 with

D�S� = �
i

d3Si, A�S� = 0. �4�

Contrary to the s-d model, the field S describes, in this case,
three independent Bose-like fields, i.e., corresponding opera-

tors Ŝq
a with different a commute with each other. The spin-

fermion model can be also considered as that representing
the low-energy electron and spin excitations of the Hubbard
model in the quantum-critical regime.24,38 The quantity Rq
corresponds, in this case, to the inverse susceptibility �q

−1 and
enters as a phenomenological input parameter of the spin-
fermion model.

Both the static case �S /��=0 and the case A�S�=0 allow
the generalization of the model �2� to M-component spins
Si= �Si

1 , . . . ,Si
M�. This generalization will be used throughout

the paper to perform the 1 /M expansion of the self-energy
and electron-magnon vertices.

For purely static Rq=�n0Rq, the s-d and spin-fermion
models are described by the Hamiltonian

H = 	
k

	kĉk�
† ĉk� + 	

q
RqŜqŜ−q + Hint,

Hint = − J	
kk�

Ŝk−k�����ĉk�
† ĉk���. �5�

Here, the Fourier transformed operators Ŝi, which correspond
to the fields Si in the continuum integral formalism, obey the

standard SU�2� commutation relations and the condition Ŝ2

=S�S+1� for the s-d model, while the components of Ŝ com-

mute with each other and Ŝ2 is not fixed for the spin-fermion
model. In the present paper, we discuss only the classical

limit of the s-d model with commuting Ŝ operators, so that
the difference between these two models is only in the addi-

tional restriction for the Ŝ2 for the s-d model �the quantum
s-d model with the noncommuting spin operators will be

considered elsewhere�. For definiteness, we assume J�0;
the results in the classical limit are the same for positive and
negative J.

III. 1 Õz EXPANSION FOR THE s-d MODEL

The 1 /z expansion considers perturbation theory around
the atomic limit of the model �	k=const�. The corresponding
sequence of equations of motion for the electronic Green’s
function was considered in Refs. 9 and 27. To zeroth order in
1 /z, we obtain the result of the Hubbard-I approximation

Gk��� =
1

F0��� − 	k
, �6�

where F0���=�− I2 /� and I=JS. To first order in 1 /z, one
has to replace F0���→Fk���, where

Fk��� = ��1 +
J2MT

�
	
q

�q

F0��� − 	k+q

−1

�7�

and �q, is the nonuniform static spin susceptibility of the
model �5�. Despite that the result �7� is obtained within the
strong-coupling expansion of the s-d model, it reproduces
correctly in second order in J the corresponding perturbation
theory result for the electronic self-energy.8

The result �7� does not guarantee, however, correct ana-
lytical properties of the electronic Green’s function at arbi-
trary J. To obtain analytical results, we consider self-
consistent approximation of Hubbard-III type9,27

Fk��� = �
1 + �F0��� − Fk����G̃k���

1 + �� − Fk����G̃k���
, �8�

where

G̃k��� =
MT

S2 	
q

�q

Fk��� − 	k+q
. �9�

The solution of Eq. �8� yields

Fk��� = � +
1 − �1 + 4I2G̃k

2���

2G̃k���
. �10�

The result for the electronic self-energy �k���=�−Fk���, ob-
tained from Eq. �10� with �q=S2 /T, coincides with the result
of the solution of single-impurity model of the DMFT for the
classical s-d model, Eq. �9� serving then as a self-consistency
condition.

IV. SELF-CONSISTENT EQUATIONS FOR THE
SELF-ENERGY AND VERTICES WITHIN

THE 1 ÕM EXPANSION

To find the electronic self-energy in model �5� within the
1 /M expansion, we consider the equation of motion for the
fermionic operator ĉk���� in the Heisenberg representation
�see, e.g., Ref. 39�
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��/�� + 	k�ĉk���� = �Hint, ĉk����� = J 	
k���

����Ŝk−k����ĉk������ .

�11�

Applying this equation to the electronic Green’s function, we
find the expression for the electronic self-energy

�k =
1

J
	

q

���k;q
z + �k;q

� �Gk+q
0 , �12�

where we have used the notation

	
q

� 
 TJ2	
q

	
i
n

.

The vertices � describe scattering of an itinerant electron by
the magnetic excitation �cf. Ref. 35�,

�k;q
m =� d�1d�2ei�n��1−�2�+i
n�2�T�ĉk�

† ��1�ĉk+q���2�Ŝ−q
m �0���


Gk
−1�Gk+q

0 �−1, �13�

T�. . .� stands for the imaginary-time ordering, Gk
0 and Gk are

the bare and full fermionic Green’s functions, respectively,
and m=+, �, or z. Note that despite the similarity of the
definition of the vertex �13� with that used for the Hubbard

model in Ref. 35, Ŝq
m denotes, in our case, the spin-subsystem

operator rather than the spin-density operator of itinerant
electrons.

The vertices �13� can be found by applying equation of
motion �11� once more. For the following consideration, it is
convenient to introduce the corresponding one-particle irre-
ducible vertex with amputated bosonic and fermionic leg �cf.
Ref. 35�

�k;q
m = Gk+q

0 �k;q
m /�J�q

mGk+q� , �14�

where �q
m is the dynamic spin susceptibility. The equation of

motion relates the vertices �14� to the one-particle irreducible
vertices of the interaction of the electron with two �para�
magnons. This vertex is, in turn, related to the vertex of an
electron interaction with three paramagnons and so on �see
Appendix for additional details�. In the following, we denote
the vertex of an interaction of an electron with n paramag-
nons as �k;q1. . .qn

m1. . .mn , where mi=+, �, and z are the paramagnon
spin indices, k is the vector of the incoming fermion momen-
tum and frequency, and q1 . . .qn are the vectors of the para-
magnon momenta and frequencies. To truncate the resulting
hierarchy of equations for the vertices, we follow the ap-
proach of Ref. 19 and retain only the terms which contribute
to the self-energy in the zeroth and first order in 1 /M �see the
Appendix�.

The resulting system of equations for the self-energy and
vertices reads

�k = M	
q

��k+qGk+q�q,

�k = 1 + 	
q

���2 − M��k+q
2 Gk+q

2 + �k+q
zz Gk+q��q,

�k
zz = M	

q

��2�k+q
3 Gk+q

3 + �k+q�k+q
zz Gk+q

2 + �k+q
zz�Gk+q��q

+ ��kGk,

�k
zz� = − 2M	

q

���k+q
4 Gk+q

4 + �k+q
2 �k+q

zz Gk+q
3 + �k+q�k+q

zz�Gk+q
2 ��q

− ��k
2Gk

2, �15�

where Gk= �i�n−	k−�k�−1 is the full �dressed� electronic
Green’s function, �k

m1. . .mn =�k;0…0
m1. . .mn are the electron-para-

magnon vertices at zero paramagnon momenta, �k=�k;0
z

=�k;0
� , �q=�q

z , �=0 for the spin-fermion model, and �=−2
for the s-d model.

Comparing Eqs. �15� with the result �10� of the 1 /z ex-
pansion, we see that these expansions treat vertex corrections
in different ways. While the 1 /M expansion treats accurately
the momentum dependence of the vertices, the “average”

vertex of the 1 /z expansion ��1+4I2G̃k
2���−1� / �2I2G̃k

2����
interpolates between the weak- and strong-coupling regimes.
Both approaches, however, are expected to be applicable in
the weak- and intermediate-coupling regimes. Below, we
consider the result of application of these approaches to the
calculation of spectral functions in the s-d and spin-fermion
models.

V. RESULTS FOR THE SPECTRAL FUNCTIONS,
SELF-ENERGY, AND VERTICES

Equations �15� give a possibility to investigate the evolu-
tion of the spectral properties with varying electron-spin cou-
pling J and the strength of magnetic correlations. For prac-
tical calculations, one has to specify an explicit form of the
magnetic susceptibility �q. In the following, we consider the
low-temperature regime with strong magnetic fluctuations,
where we employ an ansatz

�q =
1

M

A

q2 + �−2�n0, �q� � 1 �16�

for the classical s-d exchange model and

�q =
1

M

A

q2 + �−2 + r�
n�/�q�
, �
n�/vF � �q� � 1 �17�

for the effective s-d and spin-fermion models �we have
picked out explicitly the factor 1 /M for further conve-
nience�. While the constant A is determined by the stiffness
of spin excitations and can be arbitrary, the correlation length
� for the s-d type models is chosen to fulfill the sum rule

MT	
q

�q = S2. �18�

For the spin-fermion model, the correlation length is an in-
dependent parameter, which, however, can be related to the
quantity � according to

MT	
q

��q,0� = ��/J�2. �19�

For the ferromagnetically ordered ground state, � is expected
to be almost temperature independent at low T. We also con-
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sider the high-temperature regime with �q=S2 / �MT��n0.
Note that the ansatz �16� and �17� neglects the nonanalyti-

cal corrections to the spin susceptibility,41 which are ex-
pected to be not too important in the renormalized classical
regime.

A. T=0 and high-temperature results

We start investigating the solutions of Eqs. �9� and �15�
from the �→� �T→0� limit. In this case, the dominant con-
tribution to momenta sums comes from the vicinity of q=0
point. Neglecting the momentum and frequency transfer q in
the Green’s functions and the vertices in Eqs. �9� and �15�,
we obtain for the s-d model in both 1 /z and 1 /M expansions,

�k =
I2

�̄
, �k = 1 −

I2

�̄2 , �20�

where �̄=�−	k+ i0. The result �20� with �̄=� coincides with
that in the atomic limit of the classical s-d model, where the
spin dynamics can, indeed, be neglected and there are two
energy levels at �= � I for parallel and antiparallel orienta-
tion of the spins of itinerant electron and localized moment.
In the �→� case, the two poles of the Green’s function
correspond to the splitting of the Fermi surface by strong
magnetic fluctuations to Fermi surfaces of quasiparticles
with different spin projection.

The result �20� can be compared to the corresponding
result of the 1 /M expansion for the spin-fermion model:19

�k =
M��0

2 + �̄2 − ��̄2 − �1�0
2��̄2 − �2�0

2�
2�2 + M��̄

,

�k =
M

2�2 + M�2�0
2�̄2 �2�̄4 + �6 + M��0

2�̄2 − M�0
4

+ �M�0
2 − 2�̄2���̄2 − �1�0

2��̄2 − �2�0
2� , �21�

where �0=��T→0� and �1,2=1+4�1��1+M /2� /M; the
branch Im �z�0 of the square roots is chosen to guarantee
the correct analytical properties for � and �. The result �21�
yields also the two-peak structure of the spectral function
with peaks at �� ��0 and a finite gap �sf ��0 /2 at the
Fermi level. As discussed in Refs. 19 and 26, the finite gap in
the spectral function in this case is, however, an artifact of
the first-order approximation in 1 /M, since the actual spec-
tral function in the atomic limit has a behavior at small fre-
quencies A�������M−1, which is nonanalytic in 1 /M �see
Refs. 23 and 26�. However, as will be shown below, the gap
disappears quickly at finite �, making the situation, in this
case, more favorable for the application of 1 /M expansion.

Now, we study the solutions to Eqs. �15� at finite � �and
T�. At high temperatures, the correlation length is small and
the q dependence of the magnetic susceptibility can be ne-
glected, �q=S2 / �MT��n0. The criterion for this behavior is
T�J2 /vF for the s-d exchange model and T�vF for the
spin-fermion model �vF is the Fermi velocity�. The latter
criterion is never fulfilled in real systems �which is a conse-
quence of the fact that the local moments are not formed in
the spin-fermion model, i.e., the magnetism formation

mechanism is essentially Stoner-like�, so that we consider
the s-d model only. In the above-mentioned limit, we obtain
in the 1 /z expansion

�� = ��1 + 4I2�G�
loc�2 − 1�/�2G�

loc� , �22a�

G�
loc = �

−�

�

�0������ − �� − ���−1, �22b�

where �0��� is the noninteracting density of states for the
dispersion 	k. As mentioned in Sec. III, Eq. �22a� coincides
with the result of the solution of the corresponding impurity
model of DMFT, while Eq. �22b� is the self-consistency con-
dition. The result �22� is correctly reproduced by the 1 /M
expansion in the d→� limit, which is obtained by replacing
the nonlocal Green’s functions by the local one, G�

loc=	kGk.
At finite d, this expansion leads, however, to more compli-
cated equations, which we do not consider in this paper.

The evolution of the self-energy ��, the spectral function
at the Fermi surface A���=−Im GkF,� /�, and the density of
states ����=−Im G�

loc /� with increasing I calculated accord-
ing to Eqs. �22a� and �22b� for the Bethe �semielliptic� bare
density of states �0���=2�D2−�2 / ��D2� is shown in Fig. 1
�D is half of the bandwidth�. Although the spectral functions
have a one-peak structure at small enough I, one can observe
that the quasiparticle picture is, in fact, invalid at arbitrarily
small I since the real part of the self-energy has a positive
slope and �Im ��� is maximum at the Fermi level. These fea-
tures are very similar to those observed earlier in the spin-
fermion model in the presence of strong magnetic
correlations,26 although their physical origin in the present
case is different. Above a critical value I� Ic=0.5D, both the
real and imaginary parts of the self-energy diverge at the
Fermi level and the spectral functions have the two-peak
structure. The density of states ���� acquires a gap at the
Fermi level above Ic, which corresponds to a metal-insulator
transition.
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FIG. 1. �a� The spectral functions, �b� the interacting density of
states ����, and �c� real and �d� imaginary parts of the self-energy of
the s-d model in the high-temperature regime at I=0.1nD, ��a� and
�b�� n=1, . . . ,5 �from below to above�, �c� n=2, . . . ,7, and
�d� n=1, . . . ,6 �from above to below�.
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B. Low-temperature results in the weak-coupling regime

Now, we investigate the low-temperature regime with
large correlation length � and the susceptibility ansatz �16� or
�17�. First, we consider the contribution of the static spin
fluctuations with zero bosonic Matsubara frequencies 
n=0
only �so-called static approximation�. The effect of the dy-
namic spin fluctuations with nonzero bosonic Matsubara fre-
quencies, which are less important in the renormalized clas-
sical regime, is considered below. In the static approximation
and for the nearly constant Fermi velocity vF in the vicinity
of the Fermi momentum kF, both the self-energy and vertices
are actually functions of i�n−	k only:

�k = ��i�n − 	k�, �k
m1. . .mn = �m1. . .mn�i�n − 	k� . �23�

The integration over momenta can then be simplified by in-
troducing an auxiliary variable a=vFq�kF /kF� �cf. Ref. 26�,

T	
q

��k+q
m1. . .mn�pGk+q

n �q

=
AT

4�M
�

−D

D da

�a2 + vF
2�−2

��m1. . .mn��̄ − a��p

��̄ − a − ���̄ − a� + i0�n ,

�24�

where �̄=�−	k, we have performed an analytical continua-
tion i�n→�+ i0 and restricted the integration over a by �D
to account for the effect of finite bandwidth.

To solve Eqs. �9�, �10�, and �15� numerically, we param-
etrize the energy dependence of the self-energy ���� and
vertices �m1. . .mn��� by a set of values at the points ��r�r=1

Ne

suitably chosen on the real axis �we choose Ne�800–1000�,
and iterate these equations with some initial condition until
the convergence is reached. In the following, we set
A=1 /vF for definiteness.

First, we consider the results of the solution of these equa-
tions for the s-d model. The frequency dependence of the
self-energy �� and the spectral functions within the 1 /z ex-
pansion is shown in Fig. 2; the corresponding results for the
self-energy, spectral functions, and the vertex �� within the
1 /M expansion are shown in Fig. 3.

One can observe that the form of the spectral functions in
1 /z and 1 /M expansions is similar. In particular, we find that
the imaginary part of the self-energy has a Lorentz-like form
with �Im ��0���T�, and the real part of the self-energy
acquires a large positive slope at the Fermi level,
� Re � /���T�2, so that the quasiparticle picture is invalid.
With decreasing temperature, the structure of the spectral
functions changes from the one-peak to two-peak form; the
latter occur when the inverse correlation length �−1� I /vF.
At lower temperatures, the electronic spectrum and corre-
sponding Fermi surface are quasisplit due to strong magnetic
fluctuations.

These results are similar to the previously obtained results
for the spin-fermion model within the quasistatic
approach.20,23,26 The results of the 1 /M expansion for the
spin-fermion model are shown in Fig. 4. To compare the
results to the earlier studies and to the s-d model, we intro-
duce the quantity � according to Eq. �19�. At large �, we
obtain �= ��ATJ2 /4��ln�D� /vF��1/2. This quantity ap-
proaches a constant value �0 in the T→0 limit in the
renormalized-classical regime; this value is the analog of the
interaction I in the s-d model. The qualitative behavior of the
self-energy, spectral functions, and vertices is very similar to
those of Fig. 3 for the s-d model and the results of Ref. 26. In
particular, the spectral functions have a two-peak form at low
enough temperatures, with the peaks being, however, wider
than found for the s-d model.

Now, we consider the effect of the dynamic spin fluctua-
tions with nonzero bosonic Matsubara frequencies. In the
approximation of constant Fermi velocity vF, the self-energy
and vertices depend on the difference i�n−	k �contrary to the
above discussed contribution of static spin fluctuations, it
does not imply, however, the dependence of the self-energy
at the real frequency axis on the difference �−	k�. After
calculation of the self-energy at the imaginary-frequency
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FIG. 2. �a� Spectral functions and �b� the imaginary part of the
self-energy of the classical s-d model in the weak-coupling regime
�I=0.1vF ,D=5vF� at different low temperatures within the 1 /z
expansion.
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axis, we use the Padé approximants to perform analytical
continuation of the results to the real axis.40 Alternatively,
one can perform calculations directly on the real axis, the
results of both approaches being almost identical. The inte-
gration over momenta in Eqs. �15� can be performed similar
to Eq. �24�,

T	
q

	
i
n

��k+q
m1. . .mn�pGk+q

n �q

=
AT

4�M
	
i
n

�
−D

D

da
f
n

�a���m1. . .mn�i�n + i
n − a��p

��̄n + i
n − a − ��i�̄n + i
n − a��n ,

f
n
�a� =

2

�
�

�a�/vF

D/vF qdq
�q2 − �a/vF�2

A

q2 + �−2 + r�
n�/q
, �25�

with �̄n= i�n−	k.
The results for the self-energy and spectral functions in

the renormalized-classical regime of the effective s-d model
with different bandwidths are shown in Fig. 5. Although the
low-energy behavior of the self-energy and spectral functions
�Figs. 5�a� and 5�b�� is similar to that found in the static
approximation �Fig. 3�, the self-energy at higher frequencies
�0� �� � �D behaves as ������2/3. At very high frequen-
cies �� � �D, the behavior of the self-energy �����1 /� is
restored. The results for the spin-fermion model with the
dynamic spin fluctuations are shown in Fig. 6 and have the
same qualitative frequency dependence as for the effective
s-d model; the low-energy behavior of the spectral functions
�Figs. 6�c� and 6�d�� is close to the corresponding results of
the static approximation �Fig. 4�. Therefore, the effect of
dynamic spin fluctuations in the renormalized-classical re-
gime is not pronounced, and the static approximation de-
scribes correctly the low-energy behavior of the self-energy
and spectral functions.

A treatment of the dynamic spin fluctuations with nonzero
bosonic Matsubara frequencies is necessary to consider the
self-energy and spectral functions in the quantum-critical re-
gime. Although in that case the ansatz for the susceptibility
�16� may not be correct because of the possible nonanalytic
corrections,41 it is still interesting to investigate the self-
energy and spectral functions in this regime with this ansatz
to clarify the role of dynamic spin fluctuations. In the quan-
tum-critical regime, the quantity �0= ��ATJ2 /4��ln�D� /
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FIG. 4. The same as Fig. 3 for the spin-fermion model with
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vF��1/2 becomes temperature dependent itself, and one has to
employ additional ansatz for the temperature dependence of
correlation length. According to the Hertz-Millis theory42

�which is valid in the absence of nonanalytical corrections to
susceptibility�,

�−1 = B�T/vF�1/2, �26�

for definitness we set B=1.
The resulting self-energy and spectral functions are shown

in Fig. 7. The frequency dependence of these quantities is
determined by the interplay of static and dynamic fluctua-
tions. At small �−1, the dynamic fluctuations dominate, the
real part of the self-energy has negative slope, and the imagi-
nary part has a minimum at the Fermi level, the spectral
functions having one-peak structure, so that the quasiparticle
picture is valid. However, the behavior of the self-energy
������2/3 at intermediate frequencies �TvF�1/2� �� � �D
leads to strong damping of the quasiparticles, similar to the
charge instability case.43 At larger �−1, the static fluctuations
start to dominate and the low-frequency behavior found in
Ref. 26 in the quasistatic approximation is restored: the
imaginary part of the self-energy acquires maximum at the
Fermi level, the real part having a positive slope; this invali-
dates completely the quasiparticle picture. Although the two-
peak structure of the spectral functions is formed at interme-
diate �−1, only a structure with one broad peak survives with
increasing �−1. The observed behavior of the self-energy is
also very similar to that found for the Pomeranchuk instabil-
ity case in Ref. 43. This shows that the vertex corrections
�which are different in the cases of charge and spin instabili-
ties� are not too important in the quantum-critical regime.

C. Low-temperature results in the
intermediate-coupling regime

With increasing the interaction I in the s-d model for the
nearly half-filled band, one approaches the metal-insulator
transition. Although at this filling the AFM rather than the
FM instability is expected in the one-band model, we con-
sider the ferromagnetic instability, supposing that it is stabi-
lized by the influence of the other bands in a more general
multiband model.

To obtain numerical solutions in the intermediate-
coupling regime, it appears necessary to use a smooth cutoff
corresponding to the finite bandwidth, e.g., introducing the
cutoff function

w�a� =
1

2
�1 − tanh

2�a − D�
D

� �27�

in the integration over a in Eq. �24� and extending the limits
of integration from −� to �. The frequency dependence of
the spectral functions A��� and the self-energy ��, obtained
from the 1 /z expansion for D /vF=2, 1, and 0.7, is shown in
Fig. 8. One can see that at temperatures lower than some
finite temperature Ts �i.e., at large enough ��, the spectral
functions vanish at small �, which corresponds to the mag-
netically induced gap or splitting of the electronic spectrum
by magnetic fluctuations. The former possibility corresponds
to magnetically induced metal-insulator transition, similar to
that observed in manganates, while the latter fits to the weak-
coupling scenario of Sec. VB. Clarification of which of the
two possibilities is realized, requires further investigation.
The finiteness of the temperature Ts is, however, most likely
an artifact of 1 /z expansion.
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The results of the 1 /M expansion for the spectral func-
tions A��� and the self-energy ��, and vertices ��, at the
Fermi surface at M =3 are shown in Fig. 9. One can observe
that at not too low temperatures, the results of 1 /M expan-
sion are similar to the results of 1 /z expansion. At low tem-
peratures, however, the 1 /M expansion shows finite spectral
weight at the Fermi level, additional spikes of Im ���� occur
at ���=�c��0; at some temperature Ts�, we find Im ���c�
=0 and Re ���c�=�c, so that the pole of the electronic
Green’s function shifts to the real axis. At T�Ts�, the solu-
tion to Eqs. �15� becomes nonanalytical in the upper half-
plane, so that the 1 /M expansion is not able to describe the
low temperature regime. It does not exclude, however, the
possibility of the magnetically-induced metal-insulator tran-
sition, discussed above. Although a small damping of elec-
tronic excitations is expected to appear in higher orders of
the 1 /M expansion, the temperature Ts� seems to correspond
to a crossover to the regime with strongly coherent excita-
tions at new preformed Fermi surfaces.

VI. CONCLUSION

We have investigated the problem of splitting of the elec-
tronic spectrum due to coupling of electronic degrees of free-
dom to local magnetic moments and collective magnetic
modes in itinerant systems. In both regimes of weak and
intermediate coupling of magnetic and electronic degrees of
freedom, the spectral functions at sufficiently low tempera-
tures have a two-peak form, arising as a presplitting of the
energy spectrum. In the intermediate-coupling regime, the
width of the peaks in the classical s-d model tends to zero at
the temperature Ts� in the first order of the 1 /M expansion,
making the excitations at the preformed Fermi surfaces co-
herent at T�Ts�. Although a small damping of the electronic
excitations is expected to arise at finite T in higher orders of
the 1 /M expansion, it is not expected to change qualitatively
the form of the spectral functions. In the 1 /z expansion, we
observe the full splitting of electronic spectra and/or mag-
netically induced gap in the intermediate-coupling regime at
sufficiently low temperatures.

The dynamic spin fluctuations do not change qualitatively
the low-frequency behavior of the spectral functions in the
renormalized-classical regime at weak coupling. These fluc-
tuations are, nevertheless, important in the quantum-critical
regime, where we observed a rich behavior of the spectral
functions, which is determined by the intetrplay of static and
dynamic fluctuations. The account of static fluctuations alone
is not sufficient to describe correctly the spectral functions in
this regime.

A generalization of the results obtained in the present pa-
per to the quantum s-d model is of great interest. This gen-
eralization will allow one to describe analytically the forma-
tion of the Kondo resonance at the Fermi level near the
metal-insulator transition in d→�, as well as its interplay
with magnetic degrees of freedom in finite-dimensional
quantum Kondo lattices. Another problem, which is impor-
tant for the theory of correlated magnetic metals, is the in-
vestigation of the local-moment formation and magnetic
fluctuations in itinerant-electron systems �e.g., described by
the Hubbard model�.
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APPENDIX: DERIVATION OF THE EQUATIONS FOR
THE SELF-ENERGY AND VERTICES

In this appendix, we consider the derivation of the system
of integral equations for the self-energy and vertices. Using
the equation of motion �11�, we obtain

H0��x��T�cxcy
†Sa

m1Sb
m2Sc

m3 . . . ��

= ��x − y��T�Sa
m1Sb

m2Sc
m3 . . . ��

+ J�T�cxcy
†��Sx�Sa

m1Sb
m2Sc

m3 . . . �� , �A1�
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FIG. 9. The spectral functions of the classical s-d model with
the bandwidths �a� D=2vF and �b� D=vF in the first-order 1 /M
expansion at M =3 at different low temperatures and I=0.5vF.
�c�–�f� show the real and imaginary parts of the self-energy and the
vertex function � for D=2vF.
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where H0��x�=��+	���, and x, y, a, b, and c are the space-
time coordinates. Translating this to the momentum-
frequency space and combining the result with the Dyson
equation G−1=−�H0+��, we find

�k = TJ	
q,m

�k;q
m Gk+q

0 ,

�k;q1. . .qn

m1. . .mn;��� = − Gk
−1�q1+¯+qn

Rq1. . .qn

m1. . .mn

− TJ 	
qn+1,mn+1,��

�k;q1. . .qn+1

m1. . .mn+1,��������
mn+1Gk+q1+¯+qn+1

0 ,

�A2�

where Gk
0= �i�n−	k�−1,

�k;q1. . .qn

m1. . .mn;��� = − Gk
−1�Gk+q1+¯+qn

0 �−1�
0

�

d� · d�1 . . . d�n


�T�Sq1

m1��1� . . . Sqn

mn��n�ck�
† ���ck+q1+¯+qn,���0���


ei��+i
1�1+¯+i
n�n �A3�

are the reducible vertices of the interaction of an electron
with n magnons,

Rq1. . .qn

m1. . .mn = �
0

�

d�1 . . . d�nei
1�1+¯+i
n�n�T�Sq1

m1��1� . . . Sqn

mn��n���

�A4�

is the spin correlation function.
To obtain the equations for one-particle irreducible verti-

ces, we first define the connected vertices via the recursive
relations

�̃k;q1. . .qn

m1. . .mn;��� = �k;q1. . .qn

m1. . .mn;��� + �Gk
0�−1�q1+¯+qn

Rq1. . .qn

m1. . .mn

− 	
s=2

n−1

	
�Is

n�

�qi1
+¯+qis

Rqi1
. . .qis

mi1
. . .mis�̃k,qis+1

. . .qin

mis+1
. . .min

,���,

�A5�

where Is
n= �ir�r=1

s is the s-element ordered subset of �1. . .n�;
�ir�r=s+1

n = �1. . .n� \ Is
n, and the summation is taken over all

subsets Is
n. The equations for the vertices �A5� read

�̃k;q1. . .qn

m1. . .mn;��� = TJ 	
mn+1
�R̃q1. . .qn,q1+¯+qn

m1. . .mn+1 ����
mn+1 − 	

s=1

n−1

	
�Is�,��

R̃qi1
. . .qis

,qi1
+¯+qis

mi1
. . .mis

,mn+1 Gk+qi1
+¯+qis

0 �̃k,qis+1
. . .qin

mis+1
. . .min

,��������
mn+1

− 	
qn+1,��

�̃k;q1. . .qn+1

m1. . .mn+1,��������
mn+1Gk+q1+¯+qn+1

0 � , �A6�

where R̃ denotes the connected part of R. The diagram representation of Eq. �A6� for n=1, . . . ,3 and Eq. �A2� for the
self-energy is shown in Fig. 10.

At the next step, we express the vertices �̃k;q1. . .qn

m1. . .mn through the corresponding one-particle irreducible vertices �k;q1. . .qn

m1. . .mn with
the use of the Legendre transformation of the generating functional, see, e.g., Ref. 44. To the first order in 1 /M, the equations
for �k, �k,q1

, �k;q1q2

zz , and �k;q1q2q3

zz� form a closed system, see Fig. 11. The analytical form of these equations reads �below, we
omit the electronic spin indices of � assuming that any of the equal nonzero spin components of the vertex is taken�

�k = M	
q

��k;qGk+q�q, �A7�

�k,q1
= 1 + 	

q2

���2 − M��k;q2
�k+q2;q1

Gk+q2
+ �k;q1,q2

zz ��q2
Gk+q1+q2

, �A8�

FIG. 10. Diagram representation of Eq. �A6�. Solid lines corre-
spond to the bare electronic Green functions, the black circles stand
for the one-particle reducible vertices �A5�, and wiggly lines denote
external legs of these vertices. The dashed circles correspond to the

vertex R̃q1q2q3q4

m1m2m3m4.
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�k;q1q2

zz = M	
q3

�Gk+q1+q2+q3
�q3

��k;q3
�k+q3;q1

�k+q3+q1;q2
Gk+q3

Gk+q3+q1
+ �k;q3

�k+q3;q2
�k+q3+q2;q1

Gk+q3
Gk+q3+q2

+ �k,q1q2q3

zz� + �k,q3
�k+q3,q1q2

zz Gk+q3
+ M�k,q1+q2+q3

�q1q2q3

+−zz �q1+q2+q3
� , �A9�

�k;q1q2q3

zz� = M	
q4

�Gk+q1+q2+q3+q4
�q4

��k;q4
��k+q4;q1

�k+q4+q1;q3
�k+q4+q1+q3;q2

Gk+q4
Gk+q4+q1

Gk+q4+q1+q3

+ �k+q4;q2
�k+q4+q2;q3

�k+q4+q2+q3;q1
Gk+q4

Gk+q4+q2
Gk+q4+q2+q3

− �k+q4;q3
�k+q4+q3;q1

�k+q4+q1+q3;q2
Gk+q4

Gk+q4+q3
Gk+q4+q3+q1

− �k+q4;q3
�k+q4+q3;q2

�k+q4+q2+q3;q1
Gk+q4

Gk+q4+q3
Gk+q4+q3+q1

− �k+q4;q1
�k+q4+q1;q2

�k+q4+q1+q2;q3
Gk+q4

Gk+q4+q1
Gk+q4+q1+q2

− �k+q4;q2
�k+q4+q2;q1

�k+q4+q1+q2;q3
Gk+q4

Gk+q4+q2
Gk+q4+q1+q2

− �k+q4+q1+q2;q3
�k+q4;q1q2

zz Gk+q4
Gk+q4+q1+q2

− �k+q4;q3
�k+q4+q3;q1q2

zz Gk+q4
Gk+q4+q3

− �k+q4;q1q2q3

zz� Gk+q4
� − M�k+q1+q2+q4;q3

�q1q2q4

+−zz Gk+q1+q2+q4
�q1+q2+q4

�k,q1+q2+q4

− �k+q1+q2+q4;q3
�k;q1q2q4

zz� Gk+q1+q2+q4
� , �A10�

where �q=�q
z ,

�q1q2q3

m1m2m3m4 = TJ−2R̃q1q2q3,q1+q2+q3

m1m2m3m4 ��q1

m1�q2

m2�q3

m3�q1+q2+q3

m4 �−1

�A11�

is the irreducible vertex of the two-magnon interaction. In
previous treatments of the spin-fermion model �see, e.g., Ref.
23�, the vertex �A11� was neglected. For the flat density of
states, it indeed vanishes in the limit of zero bosonic frequen-
cies. Although it was pointed out that this vertex is singular
at nonzero external frequencies and T=0,45 this result is of
possible relevance at finite temperatures in the quantum-
critical regime only, since in the renormalized-classical and
high-temperature regimes, the most important contribution to
the self-energy and vertices comes from the terms with zero
bosonic Matsubara frequencies. In these regimes, the vertex

�A11� may be nonnegligible for the nonconstant �especially
singular� density of states. At the same time, the vertex �A11�
does not vanish even for the flat density of states in the s-d
model. To find this vertex, we apply the 1 /M expansion46 to
the spin part of the model �5�. To zeroth order in 1 /M, we
find

�q1q2q3

+−zz = − 2��JM�2T	
q�

�q��q�+q1+q2
−1
. �A12�

To perform numerical calculations, we consider two cases
�see also the main text�: �i� the susceptibilities �q are static
and momentum independent, �q=�n0�, and the electronic
Green’s functions also do not depend on the momentum,
Gk=Gi�n

�high-temperature regime�; �ii� the susceptibilities
have a sharp maximum of the width �−1 at q=0, and the
momentum and frequency dependence of the electronic
Green’s functions being arbitrary �low-temperature regime�.

In both cases, we approximate in the equation for the
vertex �k;q1. . .qn

m1. . .mn �n=0 for the self-energy� the Green’s func-
tions and vertices at qi�0 by the corresponding quantities at
the maximum total of four momentum k+q1+ ¯ +qn, i.e.,
set

�k+	iqi;Q1. . .Qr

m1. . .mr � �k+q1+¯+qn+1

m1. . .mr ,

Gk+	iqi
� Gk+q1+¯+qn+1

. �A13�

In addition, we use the approximation

	
q3

fqi;q3
�Q+q3

�q3
�q1q2q3

+−zz � fqi;0	
q3

�q1q2q3

+−zz �Q+q3
�q3

= − 2fqi;0
,

�A14�

where fqi;q3
is some function of electronic Green’s functions

and vertices, and we have taken into account that �q1q2q3

+−zz

depends, in fact, only on two first momenta.
Equations �A13� and �A14� are exact in regime �i� where

the electronic Green’s functions and vertices are momentum

FIG. 11. Diagram representation of Eqs. �A7�–�A11�. White
circles stand for the one-particle irreducible vertices �k;q1. . .qn

m1. . .mn ,
dashed circles for the vertex �q1q2q3

+−zz �Eq. �A11��, bold solid lines
correspond to the full electronic Green function, and wiggly lines to
the magnetic susceptibility �q.
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independent and the bosonic Matsubara frequencies can be
set to zero. In regime �ii�, the approximation �A13� underes-
timates slightly the effect of magnetic correlations, but treats
them qualitatively correct and becomes exact in the limit of
infinite correlation length �where only vertices with the mo-

mentum q=0 enter�. Approximation �A14� is even more ac-
curate in regime �ii�, since the product �Q+q3

�q3
is even

strongly peaked at q3=0. Applying Eqs. �A13� and �A14� to
Eqs. �A7� and �A10�, we obtain the system of equations �15�
of the main text.
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